USN

Fifth Semester B.E. Degree Examination, June/July 2015 Fundamentals of CMOS VLSI

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART -- A

- 1 a. Discuss the nMOS enhancement mode transistor for different conditions of vds. (06 Marks)
 - D. Elaborate the concept of P-well falorication with neat sketches. (10 Marks)
 - c. Compare CMOS and bipolar technologies. (04 Marks)
- 2 a. Obtain the transfer characteristics of a CMOS inverter and mark all the regions. Showing the status of PMOS and NMOS transistors. (10 Marks)
 - b. Illustrate the schematic and stick diagram for the expression $Y = \overline{A(B+C)}$. (10 Marks)
- 3 a. Discuss in detail the λ based design for CMOS. (10 Marks)
 - b. Realize a 3-input NAND gate for clocked CMOS logic and also for CMOS domino logic.
 (06 Marks)
 - c. Discuss the working of pseudo nMOS logic with suitable example. (04 Marks)
- a. Describe the delay unit τ in terms of sheet resistance and area capacitance for the CMOS inverter pain shown, calculate the total delay.
 (08 Marks)

- b. Explain in brief the wiring capacitances.
- (06 Marks)
- c. Narrate the steps involved in calculate the sheet resistance of:
 - i) Transistor channel ii) nMOS inverter iii) CMOS inverter.

(06 Marks)

PART - B

- 5 a. What are the scaling factors for the following device parameters:
 - i) Gate capacitance c_g ii) max-operating frequency f_0 iii) current density iv) power dissipation per gate p_g v) power speed product PT. (10 Marks)
 - b. Design a parity generator with the following specifications and draw the stick diagram of one basic cell.

(10 Marks)

Fig. Q5(b)

10EC56

6	a.	Draw the basic form of a two-phase clock generator and explain in detail.	(08 Marks)
	b.	Discuss the architectural issues to be followed in the design of a VLSI subsystem.	(06 Marks)
		Explain the precharge bus approach used in system design.	(06 Marks)
7	a.	Explain the three transistor dynamic RAM cell.	(10 Marks)
	b.	Discuss the Bangh-Wooley method used for two's complement multiplication.	(10 Marks)
8	a.	Narrate the meaning of "Real Estate" in VLSI design.	(05 Marks)
	b.	Explain testing and testability in detail.	(10 Marks)
	c.	Write a short note on scan design techniques.	(05 Marks)

* * * * *